Error Estimates for the Finite Volume Element Method for Parabolic Equations in Convex Polygonal Domains
نویسندگان
چکیده
We analyze the spatially semidiscrete piecewise linear finite volume element method for parabolic equations in a convex polygonal domain in the plane. Our approach is based on the properties of the standard finite element Ritz projection and also of the elliptic projection defined by the bilinear form associated with the variational formulation of the finite volume element method. Because the domain is polygonal special attention has to be paid to the limited regularity of the exact solution. We give sufficient conditions in terms of data which yield optimal order error estimates in L2 and H. The convergence rate in the L∞ norm is suboptimal, the same as in the corresponding finite element method, and almost optimal away from the corners. We also briefly consider the lumped mass modification and the backward Euler fully discrete method.
منابع مشابه
Some New Error Estimates of a Semidiscrete Finite Volume Element Method for Parabolic Integro-differential Equation with Nonsmooth Initial Data
A semidiscrete finite volume element(FVE) approximation to parabolic integrodifferential equation(PIDE) is analyzed in a two-dimensional convex polygonal domain. Optimal order L-error estimates are derived for both smooth and nonsmooth initial data. More precisely, for homogeneous equations, an elementary energy technique and duality argument is used to derive optimal L-error estimate of order ...
متن کاملA new positive definite semi-discrete mixed finite element solution for parabolic equations
In this paper, a positive definite semi-discrete mixed finite element method was presented for two-dimensional parabolic equations. In the new positive definite systems, the gradient equation and flux equations were separated from their scalar unknown equations. Also, the existence and uniqueness of the semi-discrete mixed finite element solutions were proven. Error estimates were also obtaine...
متن کاملSome new error estimates of a semidiscrete finite volume element method for a parabolic integro-differential equation with nonsmooth initial data
Abstract. A semidiscrete finite volume element (FVE) approximation to a parabolic integrodifferential equation (PIDE) is analyzed in a two-dimensional convex polygonal domain. An optimalorder L2-error estimate for smooth initial data and nearly the same optimal-order L2-error estimate for nonsmooth initial data are obtained. More precisely, for homogeneous equations, an elementary energy techni...
متن کاملA Finite Volume Element Method for a Nonlinear Parabolic Problem
We study a finite volume element discretization of a nonlinear parabolic equation in a convex polygonal domain. We show existence of the discrete solution and derive error estimates in L2– and H –norms. We also consider a linearized method and provide numerical results to illustrate our theoretical findings.
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003